Información de la revista
Vol. 39. Núm. 1.
Páginas 29-43 (enero - febrero 2015)
Visitas
560
Vol. 39. Núm. 1.
Páginas 29-43 (enero - febrero 2015)
ORIGINALES
Acceso a texto completo
PEG-Interferon-α ribavirin-induced HCV viral clearance: a pharmacogenetic multicenter Spanish study
Aclaramiento del Virus de la Hepatitis C Inducido por PEG-Interferón-α y Ribavirina: Estudio Farmacogenético Multicéntrico en Hospitales Españoles
Visitas
560
Javier Milara1, Maria Outeda-Macias2, Ma Dolores Aumente-rubio3, Patricio Más-Serrano4, Azucena Aldaz5, Ma Victoria Calvo6, Ma Sergia García-Simón7, Marisa Martin-Barbero8, Núria Padullés-Zamora9, Juan Antonio-Schoenenberger10, Marianne Saavedra-Aldrich11, Enrique Tévar-Alfonso12, Ana Saval1, Alfonso Pastor-Clerigues1, Marta García1, Luis Margusino-Framiñan2, Jose Luis Montero-Alvarez3, Esperanza Merino4, Jose Ignacio Herrero5, Mónica Beunza6..., Pablo Conesa-Zamora7, Alvaro Gimenez-Manzorro8, Dolors Comas-Sugrañes9, Manuel Cano-Marron10, Elena Jiménez-Mutiloa11, Pilar Díaz-Ruíz12, Julio Cortijo1Ver más
1 Servicio de Farmacia del Hospital General Universitario de Valencia.
2 Servicio de Farmacia Complejo Hospitalario Universitario A Coruña.
3 Hospital Reina Sofía de Córdoba.
4 Hospital General del SVS de Alicante.
5 Clínica Universitaria de Navarra.
6 Hospital Clínico Universitario de Salamanca.
7 Servicio de Farmacia Hospital General Universitario Santa Lucía, Cartagena.
8 Hospital Gregorio Marañon. Madrid.
9 Hospital Universitari Bellvitge. IDIBELL.
10 Hospital Universitario Arnau de Vilanova. Lleida.
11 Complejo Hospitalario Universitario INSULAR Materno-Infantil. Las Palmas de Gran Canaria.
12 Hospital Universitario Nuestra Señora de Candelaria. Tenerife. España.
Ver más
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (1)
Tablas (8)
Supplementary Table 1:. Single nucleotide polymorphisms (SNPs) selected for genotyping
Tablas
Table 1. Main basal demographic and clinical characteristics of the groups studied
Tablas
Supplementary table 2. Genotype frequencies of single nucleotide polymorphisms in HCV infected PEG-IFNα-ribavirin therapy patients with and without SVR
Tablas
Table 2. Genotype frequencies of single nucleotide polymorphisms in HCV infected PEG-IFNα-ribavirin therapy patients with and without SVR
Tablas
Table 3. Genotype frequencies of single nucleotide polymorphisms in HCV infected PEG-IFNα-ribavirin treated patients who normalized serum hepatic enzyme values after 12 weeks of treatment.
Tablas
Table 4. IL28B haplotype frequencies constructed with SNPs in HCV-infected groups (rs12979860, rs7248668, rs8105790, rs8099917)
Tablas
Table 5. Haplotype frequencies constructed with SNPs in HCV-infected groups (IL-10 rs1800896 (T/C); IL-4 rs2070874 (C/T); IL-6R rs2228145 (A/C); TNFRSF1B rs1061622 (T/G); TNFα rs1800629 (G-308A)
Tablas
Table 6. Independent predictors of SVR in patients who completed the treatment regimen with PEG-IFNα and ribavirin
Tablas
Mostrar másMostrar menos
Abstract
Objective

Dual PEGylated interferon-α (PEG-IFN) and ribavirin therapy has been the main hepatitis C virus (HCV) treatment of the last decade. Current direct-acting antiviral agents have improved the outcome of therapy but also have increased the cost and management complexity of treatment. The current study analyzes host genetics, viral and clinical predictors of sustained viral response (SVR) to dual PEG-IFN and ribavirin therapy in a representative Spanish population.

Methods

Observational prospective multicentre pharmacogenetic cohort study conducted in 12 different hospitals of 12 different Spanish regions. A total of 98 patients with SVR and 106 with non-SVR in response to PEG-IFN and ribavirin therapy were included. 33 single nucleotide polymorphisms located in 24 different genes related with inflammatory, immune and virus response were selected. Clinical and viral data were also analyzed as candidate of SVR predictors.

Results

IL-28B (rs12979860, rs7248668, rs8105790, rs8099917) and TNFRSF1B (rs1061622) genotypes, as well as TNFRSF1B/IL-10/TNFα (-308) non-TTG and TNFRSF1B/IL-10/IL-4 non-TTC haplotypes together with lower age, lower basal HCV RNA load, higher basal serum LDL cholesterol values, VHC genotypes 2 and 3 and basal low grade fibrosis 0-2 were associated with a SVR in the univariate analysis. Independent predictors of SVR in the multivariate analysis were IL-28B rs12979860 CC, TNFRSF1B/IL-10/IL-4 non-TTC along with low baseline HCV RNA load and HCV genotypes 2 and 3.

Conclusions

IL-28B rs12979860 CC, TNFRSF1B/ IL-10/ IL-4 non-TTC haplotype, low baseline HCV RNA load and HCV genotypes 2 and 3 may help to predict successful outcome to PEG-IFN/ribavirin therapy in Spanish population.

KEYWORDS:
Hepatitis C
Pharmacogenetics
Sustained viral response
TNFRSF1B
Resumen
Objetivo

El interferón-a pegilado (IFN-PEG) junto a ribavirina ha sido el principal tratamiento de la infección por el virus de la hepatitis C (VHC) de la última década. Los agentes antivirales de acción directa actuales han mejorado los resultados de la terapia, pero también han aumentado el costo y la gestión de la complejidad del tratamiento. El presente estudio analiza factores genéticos de los pacientes, así como predictores virales y clínicos de respuesta sostenida viral (RSV) al tratamiento con IFN-PEG y ribavirina en población Española.

Métodos

Estudio farmacogenético, multicéntrico, prospectivo, observacional de cohortes realizado en 12 hospitales diferentes de 12 comunidades autónomas diferentes. Se incluyeron un total de 98 pacientes con RVS y 106 sin SVR al tratamiento con IFN-PEG y ribavirina. Se seleccionaron 33 polimorfismos de nucleótido único ubicados en 24 genes diferentes relacionados con la respuesta inflamatoria, inmunológica y viral. Los datos clínicos y virales también se analizaron como candidatos predictores de RVS.

Resultados

Los genotipos IL-28B (rs12979860, rs7248668, rs8105790, rs8099917) y TNFRSF1B (rs1061622), así como los haplotipos TNFRSF1B / IL-10 / TNFα (-308) no-TTG y TNFRSF1B / IL-10 / IL-4 no-TTC junto con la menor edad, menor carga de ARN-VHC basal, valores elevados de colesterol LDL en suero basal, genotipos VHC2 y 3 y bajo grado de fibrosis basal (0-2) se asociaron con una RVS en el análisis univariante. Los predictores independientes de RVS en el análisis multivariante fueron el genotipo IL-28B rs12979860 CC, el haplotipo TNFRSF1B / IL-10 / IL-4 no-TTC junto con los bajos niveles basales de VHC-ARN y los genotipos virales VHC2 y 3.

Conclusiones

El genotipo IL-28B rs12979860 CC, el haplotipo TNFRSF1B / IL-10 / IL-4 haplotipos no-TTC, la carga viral basal baja y los genotipos del VHC2 y 3 pueden ayudar a predecir una buena respuesta a la terapia con IFN-PEG y ribavirina en población española.

PALABRAS CLAVE:
Hepatitis C
Farmacogenética
Respuesta viral sostenida
TNFRSF1B
Texto completo
Introduction

Hepatitis C virus (HCV) infection is a major global health problem affecting approximately 170 million people worldwide1. The prevalence varies notably from nearly 0.1%-1% in Europe until the 5% in Asia and Africa2,3. More than 20 % of these patients will progress to cirrhosis, hepatocellular carcinoma, liver transplantation or death4. Therefore, all patients are candidates for antiviral therapy. Dual PEGylated interferon α (PEG-IFN) ribavirin therapy has been the main HCV treatment of the last decade. However, the percentage of patients achieving a sustained virologic response (SVR), defined as undetectable HCV RNA 24 weeks after completion of treatment, is below target especially for the difficult to treat HCV genotypes 1 and 4 with dual therapy. Recently, a number of direct-acting antiviral agents (DAAs) have been developed for use with PEG-IFN/ribavirin as triple or IFN-free therapies. The first DAAs generation boceprevir and telaprevir in combination with PEG-IFN/ribavirin increased the SVR rates to 66%-75% in previously untreated HCV1 adults vs. 38% in the PEG-IFN/ribavirin group5,6. Although triple therapy has improved SVR rates, these combinations have some drawbacks, including drug-drug interactions, a low efficacy in patients with HCV 2, 3 and 4 genotypes and in those who have not responded to previous dual PEG-IFN/ribavirin therapy. In this respect, second-generation protease inhibitors, such as simeprevir, asunaprevir, and danoprevir, are currently being evaluated or used in combination with PEG-IFN/ribavirin in an effort to overcome the limited efficacy of the first-generation protease inhibitors7,9. In addition, new inhibitors of the NS5A/NS5B HCV polymerase ledipasvir and sofosbuvir are currently available as part of PEG-IFN/ribavirin triple therapy as well as in IFN-free dual therapy10.

Understanding the host and viral factors associated with viral clearance is necessary for individualizing therapy to maximize SVR rates, prevent progression to liver disease, and increase the overall benefits of therapy with respect to its prohibitive costs.

The SVR rate varies drastically among different races and ethnicities, with patients of African ancestry having much lower response rates as compared with Caucasians and Asians, supporting genetic predisposition to response11. Both host and viral factors have been previously reported to be associated with SVR. Predictors of SVR include HCV genotypes 2 and 3, lower baseline serum HCV RNA level, younger age, female sex, lower hepatic fibrosis stage, lack of insulin resistance, and lower body mass index12. Host genetics is increasingly recognized as important modulator of the therapy success. Genome-wide association studies have shown that single nucleotide polymorphisms (SNPs) in or near the interleukin-28B (IL-28B) gene are significantly associated with the treatment outcome for HCV-113. Therefore, the assessment of the host IL28B genotype is increasingly used among HCV genotype-1 patients to inform clinical prediction of treatment outcome14. More specifically, the rs12979860 and rs8099917 SNPs were the two most examined: they were found in linkage disequilibrium each other, and to be similarly informative as host predictors of sustained viral clearance. In a recent meta-analysis of results from nine studies regarding the correlation of IL28B genotype with PEG-IFN/ribavirin SVR in 3110 Caucasian HCV-1 patients, the favourable IL28B genotype CC was present in 41% of individuals, and 67% of them achieved SVR compared to 37% of those with the unfavourable genotypes15. Other pharmacogenetic studies have been performed in different populations, showing a broad number of SNPs located in different genes of the host immune response, inflammatory, fibrosis and virus response pathways to be associated with the SVR to PEG-IFN/ribavirin dual therapy16. Although genetic markers are used as predictors of PEG-IFN/ribavirin in clinics, these only explain the 60-70% of SVR in Caucasian population. Given the recent introduction of multiple new DAAs, HCV treatment options have increased in parallel to its elevated costs, making difficult the optimal treatment decision. Pharmacogenetic studies of specific populations together with the analysis of different clinical variables may be of potential value to appropriately select candidates for dual PEG-IFN/ribavirin therapy in the era of new DAAs.

The present study was designed to analyze the predictive value of different SNPs located at different host immune, inflammatory and liver fibrotic genes in a representative multicenter Spanish cohort of responders and non-responder HCV patients treated with PEG-IFN/ribavirin therapy.

MethodsStudy Design and Population

This is an observational prospective multicentre pharmacogenetic cohort study conducted in 12 different hospitals of 12 different Spanish regions (Valencia, Alicante, Cartagena, A Coruña, Córdoba, Navarra, Salamanca, Lleida, Barcelona, Madrid, Tenerife, Las palmas de Gran Canaria) considered as a representative national population. Each hospital recruited 10 VHC patients who reached SVR and 10 VHC patients who showed no response to double PEG-IFN/ribavirin therapy reaching a total of 240 patients. The follow up study period was between February 2010 and June 2013, and included 24 weeks of follow up after the end of PEG-IFN/ribavirin therapy. Inclusion criteria were: 1) older than 18 years, 2) HCV 1-4 positive diagnosis, 3) PEG-IFN/ribavirin dual therapy, 3) clinical data available for liver enzymes, lipid profile, drug adherence, and VHC viral load at baseline, and every 12 weeks until the end of follow up, 5) stored whole blood samples for genetic determinations. Exclusion criteria were: 1) Patients who interrupted treatment because of adverse events or who voluntarily dropped out, 2) patients who infected with hepatitis B virus or human immunodeficiency virus were excluded, 3) loss of more than 20% of clinical data referred in inclusion criteria, 4) loss of more than 20% of genotyping data.

All HCV infected patients enrolled in this investigation agreed to donate a blood sample for genotyping, after having signed an informed consent. This study was approved by the Ethical Committee of the General University Hospital (Valencia), Complejo Hospitalario Universitario A Coruña (Galicia), Reina Sofía Hospital (Córdoba), General Hospital (Alicante), University Clinical Hospital (Salamanca), University Clinic (Navarra), General University Hospital of Santa Lucía (Cartagena), Gregorio Marañon Hospital (Madrid), University Hospital of Bellvitge (Catalunya), University Hospital Arnau de Vilanova (Lleida), University Hospital Complejo INSULAR Materno-Infantil (Las Palmas de Gran Canaria) and University Hospital Nuestra Señora de Candelaria (Tenerife), and conducted according to provisions of the Declaration of Helsinki and Good Clinical Practice Guidelines.

Treatment regimens and definition of response

PEG-IFN alfa-2a or alfa-2b was administered at doses of 180μg or 1.5μg/kg once per week, respectively, in combination with weight-adjusted ribavirin (1000 mg/day for <75 kg and 1200 mg/day for ≥75 kg). The scheduled treatment duration was 24 weeks for HCV2 and HCV3 genotype patients and 48 weeks for HCV1 genotype patients. SVR was defined as undetectable plasma HCV RNA 24 weeks after the completion of therapy. A decline of plasma HCV RNA of less than 2 log10 at week 12 or lack of undetectable HCV RNA at treatment week 24 after having presented an at least 2 log10 decline but without reaching undetectability was considered as non-response.

Selection and genotyping of single-nucleotide polymorphisms and HCV RNA quantification

Genomic DNA was isolated from whole blood samples using the QIAamp DNA Blood Maxi Kit (Qiagen GmbH, Hilden, Germany). Selected SNPs included SNPs belonging to genes involved in the immune host response, inflammatory pathways, liver function and fibrosis and inflammatory cell signaling previously associated with SVR or with liver inflammation/ fibrosis in HCV-infected patients (see supplementary table 1)16,17.

Supplementary Table 1:.

Single nucleotide polymorphisms (SNPs) selected for genotyping

Name/ Gene  Function  SNPs (rs)  ObsHET  PredHET  HWpval  MAF  Alleles  Excluded genotyping 
CYP3A5*3  Liver inflammation  rs776746  0.113  0.116  1.0  0.062  C:T   
MDR1  Liver inflammation  rs1045642  0.483  0.482  1.0  0.404  G:A   
UGT1A9:-2152  Liver inflammation  rs17868320  0.177  0.162  0.3643  0.089  C:T   
UGT1A9:-275  Liver inflammation  rs6714486  0.177  0.272  1.61E-05  0.163  T:A  *HW P-value < 0.001 
UGT1A9*3  Liver inflammation  rs72551330  0.034  0.034  1.0  0.017  T:C  #MAF <0.05 
UGT1A8*3  Liver inflammation  rs17863762  0.054  0.053  1.0  0.027  G:A  #MAF <0.05 
UGT2B7*2  Liver inflammation  rs7439366  0.512  0.494  0.7165  0.443  C:T   
GNB3  Liver inflammation  rs5443  0.517  0.47  0.2067  0.377  C:T   
PXR  Liver inflammation  rs3814055  0.438  0.462  0.5405  0.362  C:T   
IL-28B  Response/ Liver inflammation  rs12979860  0.478  0.467  0.8919  0.372  C:T   
IL-28B  Response/ Liver inflammation  rs7248668  0.305  0.395  0.0025  0.271  C:T   
IL-28B  Response/ Liver inflammation  rs8105790  0.305  0.376  0.0133  0.251  T:C   
IL-28B  Response/ Liver inflammation  rs8099917  0.31  0.374  0.0262  0.249  T:G   
ITPA  Ribavirin toxicity  rs1127354  0.089  0.103  0.2078  0.054  C:A   
HIF-1  Liver fibrosis  rs11549465  0.187  0.193  0.8438  0.108  C:T   
VEGR-2  Liver fibrosis  rs1870377  0.365  0.39  0.4183  0.266  T:A   
FGF2  Liver fibrosis Response/  rs2922979  0.438  0.437  1.0  0.323  C:G   
IL-6R  Liver fibrosis/ inflammation Response/  rs2228145  0.507  0.486  0.6545  0.416  A:C   
IL-6  Liver fibrosis/ inflammation  rs1800796  0.148  0.145  1.0  0.079  G:C   
MTHFR  Liver inflammation  rs1801133  0.443  0.483  0.2839  0.409  C:T   
MTHFR  Liver inflammation  rs1801131  0.365  0.408  0.1671  0.286  A:C   
SLCO1B1  Liver inflammation  rs11045879  0.261  0.262  1.0  0.155  T:C   
SLCO1B1  Liver inflammation  rs4149081  0.261  0.369  1.0E-4  0.244  G:A  *HW P-value < 0.001 
TNFa  Response/ Liver inflammation  rs1799724  0.143  0.141  1.0  0.076  C:T   
TNFa  Response/ Liver inflammation  rs1800629  0.261  0.234  0.1721  0.135  G:A   
TNFa  Response/ Liver inflammation  rs361525  0.192  0.182  0.7424  0.101  G:A   
IL-10  Response/ Liver inflammation  rs1800896  0.626  0.5  0.057  0.495  C:T   
IL-4  Response/ Liver inflammation Liver  rs2070874  0.291  0.307  0.5459  0.19  C:T   
TNFRSF1B  inflammation/ fibrosis  rs1061622  0.399  0.358  0.1597  0.234  T:G   
FCGR3A  Immunity  rs396991  0.453  0.449  1.0  0.34  A:C   
FCGR2A  Immunity  rs1801274  0.517  0.5  0.7423  0.485  A:G   
STAT4  Inflammatory singnalling  rs7574865  0.365  0.4  0.2678  0.276  G:T   
PTPN22  Inflammatory singnalling  rs2476601  0.084  0.08  1.0  0.052  G:A   

*SNPs with Hardy-Weinberg-Equilibrium (HW) P-value <0.001; **SNPs with minor allele frequency (MAF) <0.05; ObsHET: Observed heterozygosity; PredHET: Predicted heterozygosity.

All SNPs were genotyped using allelic discrimination technique by means of real time PCR analysis in a 7900HT Fast Real-Time PCR System (Applied Biosystem, Foster City, CA, USA) using TaqMan® GTXpressTM Master Mix (Applied Biosystems) and 5′exonuclease TaqMan genotyping predesigned assays according to manufacturer’s instructions (Applied Biosystems). HCV genotyping was performed using the Inno-LiPA assay (Innogenetics, Zwijndrecht, Belgium). Serum HCV RNA was quantified by reverse transcription-PCR, using the Cobas Amplicor HCV Monitor Test, v 2.0 (Roche, Basel, Switzerland).

Data analysis

A descriptive analysis of the baseline variables was conducted. Before statistical analysis, normality distribution and homogeneity of the variables were tested by the Kolmogorov-Smirnov test. Continuous variables were expressed as mean ± SD or median (interquartile range), depending on its distribution, and discrete variables were expressed as percentage. Haploview V4.1 Software (Error! Hyperlink reference not valid.www.broad.harvard.edu/haploview/haploview) was used to calculate the Hardy-Weinberg equilibrium for all SNPs using the χ2 goodness-of-fit test. Those gene SNPs with a minor frequency allele less than 5% or a P-value of the Hardy-Weinberg equilibrium below 0.001 were excluded from the analysis.

Those SNPs that were associated with SVR showing a P-value less than 0.05 were selected for further analysis. The linkage disequilibrium values between the genetic markers studied (measured in Lewontin’s standardized disequilibrium coefficient D’), haplotype frequencies and haplotype-based association analyses were calculated using Haploview V4.1. Student’s T test or Mann-Whitney U test was used to compare normally distributed continuous variables with every type of virological response (SVR and non-SVR). Comparisons of qualitative variables, including genotype, allele frequencies, clinical, analytical and therapy variables, with the different types of virological response were analyzed by the χ2 test. Odds ratios (OR) and confidence intervals (CI 95%) were calculated using Woolf approximation. A multivariate logistic regression analysis, including as covariables age, HCV genotype as well as those factors that were associated with SVR with a P-value less than 0.05 in the univariate analysis, was conducted. Descriptive analyses were carried out using the SPSS statistical software package release 20.0 (IBM Corporation, Somers, New York, USA).

ResultsPatients

A total of 240 patients fulfilled the inclusion criteria for this study. Of these, 36 (15%) individuals were excluded because the loss of more than 20% of clinical data (18 patients), loss of more than 20% of genotyping data (7 patients) or due to the blood coagulation of sample (11 patients). Finally, 204 patients were included in the final analysis. After the end of follow-up, 98 (48 %) showed a SVR and 106 (52 %) showed a non-SVR to dual PEG-IFN/ribavirin therapy. Clinical characteristic of patients with SVR and non-SVR are showed in Table 1. The cohort of patients with SVR showed significant lower age (46.59 (44.7-48.4) vs. 52.08 (50.2-53.8) years old; P<0.05), lower basal HCV RNA load (5.76 ± 0.09 vs. 6.14 ± 0.08 log UI/mL; P<0.05) and higher basal serum LDL cholesterol values (114.1 ± 38.7 vs. 95.3 ± 34.2 mg/dL; P<0.05) compared with non-SVR patients. Furthermore the VHC genotypes 2 and 3 (OR (95% CI): 4.86 (2.14-10.24) P=3.25e-06) and basal low grade fibrosis 0-2 (OR (95% CI): 3.59 (0.82-6.74) P=0.0051) were associated with a SVR (table 1). No other differences were found between clinical characteristics of patients with SVR and non-SVR.lower basal HCV RNA load (5.76 ± 0.09 vs. 6.14 ± 0.08 log UI/mL; P<0.05) and higher basal serum LDL cholesterol values (114.1 ± 38.7 vs. 95.3 ± 34.2 mg/dL; P<0.05) compared with non-SVR patients. Furthermore the VHC genotypes 2 and 3 (OR (95% CI): 4.86 (2.14-10.24) P=3.25e-06) and basal low grade fibrosis 0-2 (OR (95% CI): 3.59 (0.82-6.74) P=0.0051) were associated with a SVR (table 1). No other differences were found between clinical characteristics of patients with SVR and non-SVR.

Table 1.

Main basal demographic and clinical characteristics of the groups studied

Basal clinical data  SVR (n=98)  Non-SVR (n=106)  χ2  OR  OR (95%CI)  P value 
Age (years)  46.59 (44.7-48.4)  52.08 (50.2-53.8)        0.001 
Sex (male vs. female)  67/35  68/40  0.309  1.083  0.82-1.43  0.578 
Weight (kg)  75.71 ± 18.5  74.5 ± 13.6        0.736 
Genotype 1a/ 1b and 4 vs. 2 and 3. N /N  70/24  99/7  23.04  4.86  2.14-10.24  3.25e-06 
Plasma HCV-RNA (log UI/mL)  5.76 ± 0.09  6.14 ± 0.08        0.0003 
AST (IU/L)  69.11 ± 53.7  91.4 ± 99.7        0.0662 
ALT (IU/L)  107.5 ± 86.7  107.4 ± 89.4        0.8740 
GGT (IU/L)  123.2 ± 262.9  136.4 ± 155.5        0.3121 
Cholesterol (mg/dl)  175 ± 39.3  169.4 ± 32.3        0.2635 
LDL cholesterol (mg/dl)  114.1 ± 38.7  95.3 ± 34.2        0.0031 
triglycerides (mg/dl)  114.2 ± 68.01  119.2 ± 69.2        0.6061 
Liver fibrosis. F0-F2 vs. F3-F4. N /N  46/16  36/45  14.72  3.59  0.82-6.74  0.0051 

Abbreviations: SNP, single nucleotide polymorphism; SVR, sustained virological response; OR, odds ratio; CI, confidence interval. Comparisons of qualitative variables with the different types of virological response were analyzed by the χ2 test. Mann-Whitney U test was used to compare normally distributed continuous variables with every type of virological response. Odds ratios and 95% CI per genotype were estimated by applying unconditional logistic regression. The P values less than 0.05 were considered significant. Values are expressed as mean ± SD or mean (interquartile range).

Single-nucleotide polymorphisms selection and association with SVR to PEG-IFN/ribavirin treatment

A total of 33 SNPs located in 24 different genes related with inflammatory response, immune response, response to virus and liver fibrosis were selected for the primary analysis (supplementary Table 1). Of these, 4 SNPs were excluded as a result of either a minor allele frequency below 0.05 (2 SNPs), or a P-value of the Hardy-Weinberg equilibrium below 0.001 (2 SNPs). Other 29 SNPs were in Hardy-Weinberg equilibrium indicating that no population stratification bias or genotyping error existed.

After distribution analysis of different SNPs between patients with SVR and non-SVR we only observed a significant association with the SVR in the IL-28B gene (rs12979860, rs7248668, rs8105790, rs8099917), TN-FRSF1B (rs1061622) and UGT1A9*3 (rs72551330) as represented in supplementary table 2 and table 2. In the last case, the UGT1A9*3 rs72551330 was discarded because of the low prevalence of its favorable genotype TC (3.4%).

Supplementary table 2.

Genotype frequencies of single nucleotide polymorphisms in HCV infected PEG-IFNα-ribavirin therapy patients with and without SVR

  Study cohort n=204  SVR n= 98 (48 %)  Non-SVR n= 106 (52 %)         
Gene/ SNPs  N (%)  N (%)  N (%)  χ2  OR  OR (95%CI) 
IL-28B               
rs12979860               
CC  78 (38.2)  56 (71.8)  22 (28.2)  26.47  2.27  1.57-3.27  8.75e-08 
CT  97 (47.5)  38 (39.2)  59 (60.8)         
TT  29(13.7)  4 (14.3)  25 (85.7)         
rs7248668               
CC  117 (52.0)  69 (59)  48 (41)  13.5  1.66  1.26-2.18  6.00e-04 
CT  66 (30.9)  23 (34.8)  43 (65.2)         
TT  21 (9.8)  6 (28.6)  15 (71.4)         
rs8105790               
TT  118 (52.2)  70 (59.3)  48 (40.7)  13.02  1.69  1.27-2.17  7.00e-04 
TC  65 (30.7)  22 (33.8)  43 (66.2)         
CC  21 (9.8)  6 (28.5)  15 (71.4)         
rs8099917               
TT  119 (58.3)  70 (58.8)  49 (41.2)  9.92  1.61  1.23-2.09  0.0016 
TG  65 (31.4)  21 (32.3)  44 (67.7)         
GG  20 (9.3)  7 (35)  13(65)         
CYP3A5*3               
rs776746 (T6986C)               
CC  178 (87.3)  85 (47.8)  93 (52.2)  0.043  1.094  0.46-2.56  0.83 
CT  23 (11.3)  11 (47.8)  12 (52.2)         
TT  1 (0.5)  1 (100)         
MDR1               
rs1045642 (C3435T)               
TT  33 (16.2)  13 (39.4)  20 (60.6)  1.34  1.024  0.56-2.14  0.41 
CT  98 (48.0)  50 (51)  48 (49)         
CC  73 (35.3)  36 (48.6)  37 (51.4)         
UGT1A9               
rs17868320 (-2152)               
CC  165 (80.4)  78 (47.3)  87 (52.7)  0.014  1.045  0.51-2.13  0.9 
CT  39 (18.1)  19 (48.7)  20 (51.3)         
rs6714486 (-275)               
AA  16 (6.4)  7 (43.7)  9 (56.2)  0.273  1.18  0.62-2.26  0.61 
TA  40 (18.1)  17 (42.5)  23 (57.5)         
TT  148 (71.1)  71 (47.9)  77 (52.1)         
UGT1A9*3               
rs72551330               
TC  7 (3.4)  6 (85.7)  1 (14.3)  4.017  1.817  1.29-2.54  0.036 
TT  196 (96.1)  92 (46.9)  104 (53.1)         
UGT1A8*3               
rs17863762               
GA  15 (5.9)  9 (60)  6 (40)  0.695  0.607  0.18-1.98  0.405 
GG  188 (90.7)  86 (45.8)  102 (54.2)         
UGT2B7*2               
rs7439366               
CC  60 (29.4)  26 (43.3)  34 (56.7)  1.334  0.981  0.671-1.86  0.513 
CT  105 (51.5)  51 (48.6)  54 (51.4)         
TT  38 (18.6)  21 (55.3)  17 (44.7)         
GNB3               
rs5443 (C825T)               
CC  75 (36.8)  37 (49.3)  38 (50.7)  1.273  1.01  0.751-1.24  0.529 
CT  104 (51.0)  52 (50)  52 (50)         
TT  24 (11.8)  9 (37.5)  15 (62.5)         
PXR               
rs3814055 (C-25385T)               
CC  85 (41.7)  46 (54.1)  39 (45.9)  2.271  0.95  0.784-1.28  0.321 
CT  89 (43.6)  38 (42.7)  51 (57.3)         
TT  29 (14.2)  14 (48.3)  15 (51.7)         
ITPA               
rs1127354               
AA  3 (1)  1 (33.3)  2 (66.6)  0.588  1.47  0.546-3.96  0.443 
CA  18 (8.3)  6 (33.3)  12 (66.6)         
CC  182 (88.7)  88 (48.4)  94 (51.6)         
HIF-1               
rs11549465 (C1772T)               
CC  161 (78.9)  79 (49.1)  82 (50.9)  2.844  1.04  0.742-1.981  0.241 
CT  39 (19.1)  19 (48.7)  20 (51.3)         
TT  3 (1.5)  0 (0)  3 (100)         
VEGR-2               
rs1870377 (A-1719T)               
AA  17 (7.8)  4 (23.5)  13 (76.5)  3.764  1.14  0.57-2.14  0.152 
TA  74 (35.8)  35 (47.3)  39 (52.7)         
TT  113 (54.9)  58 (51.3)  55 (48.7)         
FGF2               
rs2922979 (C754G)               
CC  92 (45.1)  43 (46.7)  49 (53.3)  0.942  1.13  0.77-2.41  0.418 
CG  90 (44.1)  42 (46.7)  48 (53.3)         
GG  21 (10.3)  13 (61.9)  8 (38.1)         
IL-6R               
rs2228145 (A1510C)               
AA  67 (32.8)  30 (44.8)  37 (55.2)  0.851  1.09  0.75-1.98  0.653 
AC  103 (50.5)  53 (51.5)  50 (48.5)         
CC  33 (16.2)  15 (45.5)  18 (54.5)         
IL-6               
rs1800796 (C-634G)               
CC  1 (0.5)  1 (100)  0 (0)  1.132  1.05  0.74-2.41  0.568 
GC  30 (14.7)  15 (50)  15 (50)         
GG  172 (84.3)  82 (47.7)  90 (52.3)         
MTHFR               
rs1801133 (C667T)               
CC  76 (37.3)  36 (47.4)  40 (52.6)  0.004  1.02  0.575-1.80  0.952 
CT  89 (43.6)  41 (46.1)  48 (53.9)         
TT  38 (18.6)  21 (55.3)  17 (44.7)         
rs1801131 (A-1298C)               
AA  107 (52.5)  54 (50.5)  53 (49.5)  0.435  0.83  0.478-1.442  0.509 
AC  75 (36.8)  34 (45.3)  41 (54.7)         
CC  21 (10.3)  10 (47.6)  11 (52.4)         
SLCO1B1               
rs11045879 (C/T)               
CC  5 (2.5)  1 (20)  4 (80)  0.072  1.087  0.591-1.99  0.789 
TC  53 (26.0)  26 (49.1)  27 (50.9)         
TT  146 (71.6)  71 (48.6)  75 (51.4)         
TNF-α               
rs1799724 (C-857T)               
CC  173 (84.8)  82 (47.4)  91 (52.6)  0.069  1.11  0.511-2.41  0.0792 
CT  29 (14.2)  15 (51.7)  14 (48.3)         
TT  1 (0.5)  0 (0)  1 (100)         
rs1800629 (G-308A)               
AA  1 (0.5)  0 (0)  1 (100)  2.731  0.59  0.315-1.016  0.098 
GA  53 (26.0)  31 (58.5)  22 (41.5)         
GG  149 (73.0)  66 (44.3)  83 (55.7)         
rs361525 (G-238A)               
GA  39 (19.1)  18 (46.2)  21 (53.8)  0.006  1.027  0.514-2.042  0.939 
GG  164 (80.4)  79 (48.2)  85 (51.8)         
IL-10               
rs1800896 (T-1082C)               
CC  37 (18.1)  23 (62.2)  14 (37.8)  3.418  1.047  0.67-1.87  0.181 
TC  128 (62.7)  67 (52.3)  61 (47.7)         
TT  39 (19.1)  16 (41)  23 (59)         
IL-4               
rs2070874 (C-33T)               
CC  136 (66.7)  60 (44.1)  76 (55.9)  3.303  1.01  0.55-2.01  0.192 
CT  59 (28.9)  33 (55.9)  26 (44.1)         
TT  9 (4.4)  5 (55.6)  4 (44.4)         
TNFRSF1B               
rs1061622 (T587G)               
GG  16 (7.8)  12 (75)  4 (25)  4.23  1.78  1.272-2.512  0.038 
TG  76 (37.3)  40 (52.6)  36 (47.4)         
TT  112 (54.9)  46 (41.1)  66 (58.9)         
FCGR3A               
rs396991 (A559C)               
AA  88 (39.2)  41 (46.6)  47 (53.4)  2.024  1.93  0.77-4.88  0.155 
AC  83 (36.8)  40 (48.2)  43 (51.8)         
CC  31 (11.3)  19 (61.3)  12 (38.7)         
FCGR2A               
rs1801274 (A519G)               
AA  54 (22.1)  29 (53.7)  25 (46.3)  0.228  0.847  0.428-1.676  0.633 
AG  104 (46.6)  49 (47.1)  55 (52.9)         
GG  46 (18.1)  23 (40)  23 (50)         
STAT4               
rs7574865 (G/T)               
GG  110 (53.9)  57 (51.8)  53 (48.2)  1.697  0.693  0.398-1.204  0.193 
GT  75 (36.8)  31 (41.3)  44 (58.7)         
TT  19 (9.3)  10 (52.6)  9 (47.4)         
PTPN22               
rs2476601 (C1858T)               
CT  17 (8.3)  7 (41.2)  10 (58.8)  0.35  1.354  0.494-3.709  0.554 
CC  187 (91.7)  91 (48.7)  96 (51.3)         

Abbreviations: SNP, single nucleotide polymorphism; SVR, sustained virological response; OR, odds ratio; CI, confidence interval. Genotype frequencies were determined by χ2 test using 3 × 2 or 2 × 2 tables as appropriate. Odds ratios and 95% CI per genotype were estimated by applying unconditional logistic regression. The P values less than 0.05 were considered significant.

Table 2.

Genotype frequencies of single nucleotide polymorphisms in HCV infected PEG-IFNα-ribavirin therapy patients with and without SVR

  Study cohort n=204  SVR n= 98 (48 %)  Non-SVR n= 106 (52 %)         
Gene/ SNPs  N (%)  N (%)  N (%)  χ2  OR  OR (95%CI)  P 
IL-28B               
rs12979860               
CC  78 (38.2)  56 (71.8)  22 (28.2)  26.47  2.27  1.57-3.27  8.75e-08 
CT  97 (47.5)  38 (39.2)  59 (60.8)         
TT  29(13.7)  4 (14.3)  25 (85.7)         
Allele of -response               
(37.2)  (23.5)  (50)  30.55  4.75  2.57-8.76  3.25e-08 
rs7248668               
CC  117 (52.0)  69 (59)  48 (41)  13.5  1.66  1.26-2.18  6.00e-04 
CT  66 (30.9)  23 (34.8)  43 (65.2)         
TT  21 (9.8)  6 (28.6)  15 (71.4)         
Allele of -response               
(27.1)  (18.4)  35.2  14.61  3.04  1.66-5.54  1.00e-04 
rs8105790               
TT  118 (52.2)  70 (59.3)  48 (40.7)  13.02  1.69  1.27-2.17  7.00e-04 
TC  65 (30.7)  22 (33.8)  43 (66.2)         
CC  21 (9.8)  6 (28.5)  15 (71.4)         
Allele of -response               
(25.1)  (16.8)  (32.9)  13.83  3.04  1.68-5.49  2.00e-04 
rs8099917               
TT  119 (58.3)  70 (58.8)  49 (41.2)  9.92  1.61  1.23-2.09  0.0016 
TG  65 (31.4)  21 (32.3)  44 (67.7)         
GG  20 (9.3)  7 (35)  13(65)         
Allele of -response               
(24.9)  (17.9)  (31.4)  12.32  2.81  1.56-5.03  0.0016 
TNFRSF1B               
rs1061622 (T587G)               
GG  16 (7.8)  12 (75)  4 (25)  4.23  1.78  1.27-2.51  0.038 
TG  76 (37.3)  40 (52.6)  36 (47.4)         
TT  112 (54.9)  46 (41.1)  66 (58.9)         
Allele of -response               
(23.4)  (68.4)  (82.1)  4.22  1.85  1.31-2.42  0.041 

Abbreviations: SNP, single nucleotide polymorphism; SVR, sustained virological response; OR, odds ratio; CI, confidence interval. Genotype frequencies were determined by χ2 test using 3 × 2 or 2 × 2 tables as appropriate. Odds ratios and 95% CI per genotype were estimated by applying unconditional logistic regression. The P values less than 0.05 were considered significant.

The prediction power for SVR differed among the five SNPs: the CC homozygous genotype of IL28B rs12979860 SNP was more strongly associated (OR (95% CI): 2.27 (1.57-3.27) P=8.75e-08 for CC vs. CT/TT) than the CC genotype of rs7248668 (OR (95% CI): 1.66 (1.26-2.18) P=6.00e-04 for CC vs. CT/TT), the TT genotype of rs8105790 (OR (95% CI): 1.69 (1.27-2.17) P= 7.00e-04 for TT vs. TC/CC), the TT genotype of rs8099917 (OR (95% CI): 1.61 (1.23-2.09) P= 0.0016 for TT vs. TG/GG) or the TNFRSF1B GG genotype of rs1061622 (OR (95% CI): 1.78 (1.27-2.51) P= 7.00e-04 for GG vs. TG/TT) as show Table 2.

HCV active infection is accompanied by chronic liver inflammation which may be monitored by simple hepatic enzyme serum analysis. In this work, both cohorts of responders and non-responder patients showed similar elevated aspartate transaminase (AST) and alanine aminotransferase (ALT) hepatic enzymes (table 1). Host genetic SNPs located in IL28B (rs12979860) and in GNB3 (rs5443) were associated with AST and ALT normalization on week 12 of treatment independently of the final response to treatment (table 3) suggesting a positive influence on the hepatic anti-inflammatory role of the PEG-IFN/ribavirin treatment.

Table 3.

Genotype frequencies of single nucleotide polymorphisms in HCV infected PEG-IFNα-ribavirin treated patients who normalized serum hepatic enzyme values after 12 weeks of treatment.

Gene/ SNPs  AST < 35mg/dL N (%)  AST ≥ 35mg/dL N (%)  χ2  OR  OR (95%CI)  P 
GNB3             
rs5443 (C825T)             
CC  51 (70.8)  21 (29.2)  6.34  2.14  1.24-3.54  0.042 
CT  75 (78.1)  21 (21.9)         
TT  12 (52.2)  11 (47.8)         
IL-28B             
rs12979860             
CC  61 (81.3)  14 (18.7)  13.56  2.72  1.13-4.56  0.001 
CT  65 (73)  24 (27)         
TT  12 (44.4)  15 (55.6)         
Gene/ SNPs  ALT < 45mg/dL N (%)  ALT ≥ 45mg/dL N (%)  χ2  OR  OR (95%CI)  P 
GNB3             
rs5443 (C825T)             
CC  55 (69.6)  24 (30.4)  5.87  1.84  1.02-2.52  0.041 
CT  63 (72.4)  24 (27.6)         
TT  14 (53.8)  12 (46.2)         
IL-28B             
rs12979860             
CC  63 (84)  12 (16)  13.25  2.91  1.41-6.04  0.001 
CT  63 (70)  27 (30)         
TT  13 (48.1)  14 (51.9)         

Abbreviations: SNP, single nucleotide polymorphism; SVR, sustained virological response; OR, odds ratio; CI, confidence interval; AST: aspartate transaminase; ALT: alanine aminotransferase. Genotype frequencies were determined by χ2 test using 3 × 2 or 2 × 2 tables as appropriate. Odds ratios and 95% CI per genotype were estimated by applying unconditional logistic regression. The P values less than 0.05 were considered significant.

Haplotype analysis among the responders and non-reponders HCV patients

After analysing the linkage disequilibrium among the polymorphisms studied, only a moderate association of IL28B rs12979860 with an IL28B rs7248668, rs8105790 and IL28B rs8099917 (D’< 0.8) and strong association of IL28B rs7248668, rs8105790 and IL28B rs8099917 (D’< 0.8; Figure 1) were found. The reconstructed haplotypes of the IL-28B polymorphisms did not improved the predictive value of rs12979860 (table 4) suggesting an independent predictive value for each IL-28B SNP. Next analysis was designed to detect potential genegene interactions between combinations of 2 or 3 different SNPs. Table 5 shows the association of different gene-gene interactions with the SVR to dual PEG-IFN/ribavirin therapy. Different inflammatory and immune response pathways such as the IL-10/IL-4 and IL-10/IL-6R haplotypes as well as interactions with the TNFRSF1B gene with IL-10, IL-4 and TNFa genes were significantly associated with SVR (table 5).

Figure 1.

Pairwise linkage disequilibrium (D′) pattern of IL28B region.

(0.07MB).
Table 4.

IL28B haplotype frequencies constructed with SNPs in HCV-infected groups (rs12979860, rs7248668, rs8105790, rs8099917)

Haplotype  Frequency  SVR (n=98)  Non-SVR (n=106)  χ2  P value 
CCTT  57  71 (139.2:56.8)  43.9 (92.2:1 17.8)  30.37  3.57e-08 
TTCG  19.2  12.9 (25.2:170.8)  25.1 (52.7:157.3)  9.747  0.0018 
TCTT  12.6  8.6 (16.8:179.2)  16.3 (34.3:175.7)  5.537  0.0186 
CTCG  2.7  2.9 (5.7:190.3)  2.4 (5.1:204.9)  0.088  0.7669 
TTTT  2.3  1 (1.9:194.1)  3.6 (7.5:202.5)  2.978  0.0844 
TCCG  1.5  1 (2:194)  2 (4.2:205.8)  0.596  0.4402 
CTTT  1.5  1.6 (3.1:192.9)  1.4 (3:207)  0.014  0.9062 

Abbreviations: SVR, sustained virological response. The P-values were calculated from chi-squared (χ2) test.

Table 5.

Haplotype frequencies constructed with SNPs in HCV-infected groups (IL-10 rs1800896 (T/C); IL-4 rs2070874 (C/T); IL-6R rs2228145 (A/C); TNFRSF1B rs1061622 (T/G); TNFα rs1800629 (G-308A)

SNPs  Heplotype  Frequence  SVR (n=98)  Non-SVR (n=106)  χ2  P 
IL-10 (T/C)/ IL-4 (C/T)  TC  43.4  38 (121.5:74.5)  48 (108.2:101.8)  4.515  0.0335 
IL-10 (T/C)/ IL-6R (A/C)  TA  29.3  24 (148.9:47.1)  34.3 (137.9:72.1)  5.192  0.0227 
TNFRSF1B (T/G)/ IL-10 (T/C)  TT  36.6  30.5 (136.2:59.8)  42.3 (121.2:88.8)  6.064  0.0138 
TNFRSF1B (T/G)/ TNFα (G-308A)  TG  67.6  62.4 (122.4:73.6)  72.4 (152.1:57.9)  4.61  0.0317 
TNFRSF1B (T/G) / IL-10 (T/C) / TNFα (G-308A)  TTG  30.4  24 (148.9:47.1)  36.3 (133.7:76.3)  7.248  0.0071 
TNFRSF1B (T/G)/ IL-10 (T/C)/ IL-4 (C/T)  TTC  32.5  25.9 (145.1:50.9)  38.6 (129:81)  7.361  0.0067 

Abbreviations: SVR, sustained virological response. The P-values were calculated from chi-squared (χ2) test.

Multivariate analysis

According to the univariate analysis, SNPs in IL-28B (rs12979860, rs7248668, rs8105790, rs8099917) and TNFRSF1B (rs1061622) genes, as well as the haplotypes TNFRSF1B/IL-10/TNFa (-308) TTG and TNFRSF1B/IL-10/IL-4 TTC, were entered into a multivariate logistic regression model adjusted for age, HCV genotype, presence of advanced fibrosis, HCV baseline viral load and basal LDL cholesterol values. In the multivariate analysis TNFR-SF1B/ IL-10/ IL-4 non-TTC was independently associated with SVR along with IL28B rs12979860 CC genotype, low baseline HCV RNA load and HCV genotypes 2 and 3 (Table 6). No independent association was detected for IL-(rs7248668, rs8105790, rs8099917) or TNFRSF1B (rs1061622), although the TNFRSF1B/IL-10/TNFα (-308) non-TTG was near to be significant (P=0.054).

Table 6.

Independent predictors of SVR in patients who completed the treatment regimen with PEG-IFNα and ribavirin

Parameter  OR (95% CI)  P value 
Age.years (≤ 48 vs. > 48)  1.1 (0.87-1.3)  0.09 
HCV genotype (2. 3 vs. 1a. 1b. 4)  3.61 (1.98-7.25)  0.0002 
Fibrosis (F0-F2 vs. F3-F4)  2.61 (0.97-8.54)  0.145 
Baseline HCV-RNA (log UI/mL; ≤ 5.79 vs. > 5.79)  3.54 (2.1-10.41)  0.014 
LDL cholesterol (mg/dL; ≥110 vs. <110)  2.04 (1.41-7.98)  0.071 
IL-28B rs12979860 (CC vs. CT/ TT)  2.11 (1.1-5.48)  0.004 
TNFRSF1B rs1061622 (GG vs. TG/ TT)  1.55 (0.84-9.47)  0.157 
TNFRSF1B/ IL-10 / TNFα (-308); Non-TTG vs. TTG  1.98 (0.9-6.51)  0.054 
TNFRSF1B/ IL-10/ IL-4; Non-TTC vs. TTC  2.01 (1.1-5.87)  0.047 

Abbreviations: SVR, sustained virological response; OR, odds ratio; CI, confidence interval; pegIFNα: pegylated interferon alpha.OR of having a SVR to PEG-IFNα-ribavirin therapy were calculated. P values less than 0.05 were considered statistically significant.

Discussion

Different DAAs have been approved recently for HCV infection. These compounds used in different combinations, including PEG-INF-based triple therapies to INF-free oral bitherapies, have increased SVR rates even above 90%18. In this scenario, host genetics might become appropriate to target patients who could more likely respond to conventional dual therapy with PEG-IFN and ribavirin which represents an efficient tool to individualize therapy.

The present work is a pharmacogenetic study conducted in a representative Spanish population of two cohorts of HCV infected patients who reached SVR and non-SVR to dual PEG-IFN and ribavirin therapy. In addition to well-known loci on the IL-28B gene, the previously unobserved SNPs located in the TNFRSF1B (rs1061622) and in different IL-10/ IL-4/ IL-6R/TNFα haplotypes were shown to have a significant association with the outcome of HCV treatment using PEG-IFNα and ribavirin. After multivariate analysis, the IL-28B rs12979860 CC genotype and TNFRSF1B/ IL-10/ IL-4 non-TTC haplotype were independently associated with SVR along with low baseline HCV RNA load and HCV genotypes 2 and 3 which may help to predict successful outcome in Spanish population.

Many studies over the last three decades have evaluated genetic predictors of HCV treatment response. Although the IL-28B genotype has emerged as the strongest predictor of treatment response, a recent systematic review found that more than thirty genes have been associated with treatment response to INF-based therapies16. In this study we found an independent SVR predictive value for the IL-28B rs12979860 CC genotype but not for the rs7248668, rs8105790 or rs8099917 SNPs mainly because they are in linkage disequilibrium with rs12979860. It has been commented before the importance of the ethnicity to predict SVR. In fact, IL-28B frequency in each different SNP varies depending of the ethnicity which explains different responses to dual PEG-IFN/ribavirin treatment. Thus, for example, the Asian population shows a favorable 77% rs12979860 CC genotype distribution vs. 38% in Caucasian and 15% in African population which reflects the highest SVR of the Asian population13,19,20. In addition, the most powerful IL-28B rs8099917 genotype predicts near to 90% of SVR in Asian population13 while in Caucasian population the best predictor was rs12979860 with a 60-70% of predictive value. Although Spanish population belongs to Caucasian ethnicity, to our knowledge there are no studies with a representative Spanish population from different regions which may add some variation to the current data. In this work we observed a 38.2% of rs12979860 CC genotype distribution in the general population studied, similar to the previously described in Caucasian population. Patients with SVR showed a 71.8% of rs12979860 CC genotype vs. 28.2% of non-responders, slightly lower than in general Caucasian population of the original studies13. Furthermore, the rs8099917 favorable TT genotype was the worst predictive IL-28B SNP. In terms of clinical use, the haplotype analysis revealed that combining all IL-28B SNPs results did not improve the strength of the association between the IL-28B genotype and SVR as compared with the results using rs12979860 genotype alone as recently was observed in other populations21. Cytokines and chemokines which are secreted by immune cells contribute to viral control, or liver damage. Examples are INFα/β, INFγ, TNFα, IL-6, IL-10, IL-4 and transforming growth factor beta (TGFβ) between others22. They are able to render uninfected cells resistant to infection and cure the infected ones from the virus by stopping viral replication. In fact, PEG-INF-based therapy mimics the effect of host defense against HCV, increasing the expression of interferon stimulated genes (ISG) to kill HCV. In this regard, recent works have shown an association of different SNPs on TNFα (rs1800629), TGFβ (rs1800469), IL-6 (rs1800797), IL-10 (rs1800896) and IL-4 (rs2070874) with SVR to PEG-INF ribavirin therapy16,23 which highlight the importance of an optimal host genetic anti-viral response for success of dual therapy.

TNF-α can bind to two different receptors: TNFRSF1A (tumour necrosis factor receptor superfamily 1A) and TN-FRSF1B (tumour necrosis factor receptor superfamily 1B); which activates NF-κB and triggers several inflammatory pathways with anti-viral properties24,25. Rs1061622 is located in the exon 6 of TNFRSF1B, and the change of T to G causes a functional amino acid substitution at codon 196 from methionine (Met) to arginine (Arg) in the translated protein TNF receptor 2 (TNFR2). This variant G is supposed to produce a change of biological function of the TNFR2 protein affecting TNF-a binding and NF-κB activation which consequently modifies INF I and III production25. Interestingly, in some drug sensitivity studies, rs1061622 was found to be associated with a favorable prognosis of non-small cell lung cancer patients treated with chemoradiotherapy26 and with a beneficial response to infliximab in Crohn’s disease27. In this work, it was observed for the first time an association of the TNFR-SF1B rs1061622 G allele with a SVR. In the same way, different haplotypes combining IL-10, IL-6R, TNFα and IL-4 cytokines increased the predictive value of TNFRS-F1B rs1061622, indicating that anti-viral inflammatory response is a complex molecular process which encompasses a broad number of inflammatory cells and molecular pathways. In fact, TNFRSF1B/ IL-10/ IL-4 non-TTC hplotype reached significant association with SVR in the multivariate analysis.

As part of the different inflammatory pathways involved in HCV liver inflammation, GNB3 rs5443 CC genotype, which encodes a splice variant of the β3 subunit of heterotrimeric G proteins, has been associated with an inactivation of GNB3, thus reducing the activation of broad number of inflammatory receptors coupled to GNB3. This fact, may explain rapid normalization of AST and ALT hepatic enzymes in GNB3 CC carriers observed in this work, although no association with SVR was observed.

However, as we commented before, host genetics cannot explain the 100% of SVR. There are other clinical and viral factors that influence the response to PEG-IFN/ribavirin treatment. In this work we observed an association of lower age, lower basal HCV-RNA load, HCV2 and HCV3 genotypes, lower fibrosis stage F0-F2, and elevated LDL cholesterol with a SVR, which confirm previous reports28,29. However, the multivariate analysis independently associated lower basal HCV-RNA load, HCV 2 and 3 genotypes as predictors of SVR, probably because the study sample did not reach enough size.

In summary, we found genetic, viral an clinical parameters associated with SVR, particularly IL-28B rs12979860 CC, TNFRSF1B/ IL-10/ IL-4 non-TTC haplotype, low baseline HCV RNA load and HCV genotypes 2 and 3 which may help to predict successful outcome to PEG-IFN/ribavirin therapy in Spanish population. Further analysis would be required to confirm these associations with triple therapy including new DAAs.

Uncited references
[8]
Fried MW , Buti M , Dore GJ , Flisiak R , Ferenci P , Jacobson I , et al.
Once-daily simeprevir (TMC435) with pegylated interferon and ribavirin in treatment-naive genotype 1 hepatitis C: the randomized PILLAR study.
Hepatology, 58 (2013), pp. 1918-1929
Bibliography
[1]
Lauer GM , Walker BD .
Hepatitis C virus infection.
N Engl J Med, 345 (2001), pp. 41-52
[2]
Armstrong GL , Wasley A , Simard EP , McQuillan GM , Kuhnert WL , Alter MJ .
The prevalence of hepatitis C virus infection in the United States, 1999 through 2002.
Ann Intern Med, 144 (2006), pp. 705-714
[3]
Desenclos JC .
The challenge of hepatitis C surveillance in Europe.
Euro Surveill, 8 (2003), pp. 99-100
[4]
McHutchison JG , Bacon BR .
Chronic hepatitis C: an age wave of disease burden.
Am J Manag Care, 11 (2005), pp. S286-S295
[5]
Jacobson IM , McHutchison JG , Dusheiko G , Di Bisceglie AM , Reddy KR , Bzowej NH , et al.
Telaprevir for previously untreated chronic hepatitis C virus infection.
N Engl J Med, 364 (2011), pp. 2405-2416
[6]
Poordad F , McCone J Jr. , Bacon BR , Bruno S , Manns MP , Sulkowski MS , et al.
Boceprevir for untreated chronic HCV genotype 1 infection.
N Engl J Med, 364 (2011), pp. 1195-1206
[7]
Everson G, Cooper C, Hezode C, Shiffman ML, Yoshida E, Beltran-Jaramillo T, et al. DAUPHINE: a randomized phase II study of danoprevir/ritonavir plus peginterferon alpha-2a/ribavirin in HCV genotypes 1 or 4. Liver Int 2014.
[9]
Marcellin P , Cooper C , Balart L , Larrey D , Box T , Yoshida E , et al.
Randomized controlled trial of danoprevir plus peginterferon al-fa-2a and ribavirin in treatment-naive patients with hepatitis C virus genotype 1 infection.
Gastroenterology, 145 (2013), pp. 790-800e3
[10]
Dhingra A , Kapoor S , Alqahtani SA .
Recent advances in the treatment of hepatitis C.
Discov Med, 18 (2014), pp. 203-208
[11]
Muir AJ , Bornstein JD , Killenberg PG .
Peginterferon alfa-2b and ribavirin for the treatment of chronic hepatitis C in blacks and non-Hispanic whites.
N Engl J Med, 350 (2004), pp. 2265-2271
[12]
Ghany MG , Strader DB , Thomas DL , Seeff LB .
Diagnosis, management, and treatment of hepatitis C: an update.
Hepatology, 49 (2009), pp. 1335-1374
[13]
Ge D , Fellay J , Thompson AJ , Simon JS , Shianna KV , Urban TJ , et al.
Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance.
Nature, 461 (2009), pp. 399-401
[14]
Andriulli A , Di Marco V , Margaglione M , Ippolito AM , Fattovich G , Smedile A , et al.
Identification of naive HCV-1 patients with chronic hepatitis who may benefit from dual therapy with peg-in-terferon and ribavirin.
J Hepatol, 60 (2014), pp. 16-21
[15]
Rangnekar AS , Fontana RJ .
Meta-analysis: IL-28B genotype and sustained viral clearance in HCV genotype 1 patients.
Aliment Pharmacol Ther, 36 (2012), pp. 104-114
[16]
Schlecker C, Ultsch A, Geisslinger G, Lotsch J. The pharmacogenetic background of hepatitis C treatment. Mutat Res 2012.
[17]
Muir AJ , Gong L , Johnson SG , Lee MT , Williams MS , Klein TE , et al.
Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-alpha-based regimens.
Clin Pharmacol Ther, 95 (2014), pp. 141-146
[18]
Scheel TK , Rice CM .
Understanding the hepatitis C virus life cycle paves the way for highly effective therapies.
Nat Med, 19 (2013), pp. 837-849
[19]
Kobayashi M , Suzuki F , Akuta N , Sezaki H , Suzuki Y , Hosaka T , et al.
Association of two polymorphisms of the IL28B gene with viral factors and treatment response in 1,518 patients infected with hepatitis C virus.
J Gastroenterol, 47 (2012), pp. 596-605
[20]
Thompson AJ , Muir AJ , Sulkowski MS , Ge D , Fellay J , Shianna KV , et al.
Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus.
Gastroenterology, 139 (2010), pp. 120-9e18
[21]
Poordad F , Bronowicki JP , Gordon SC , Zeuzem S , Jacobson IM , Sulkowski MS , et al.
Factors that predict response of patients with hepatitis C virus infection to boceprevir.
Gastroenterology, 143 (2012), pp. 608-18e1-5
[22]
Hiroishi K , Eguchi J , Ishii S , Hiraide A , Sakaki M , Doi H , et al.
Immune response of cytotoxic T lymphocytes and possibility of vaccine development for hepatitis C virus infection.
J Biomed Biotechnol, 2010 (2010), pp. 263810
[23]
Shalaby SM , Radwan MI , Abdelazim S , Nafee AM .
Interleukin-4 polymorphisms and response to combination therapy in Egyptian chronic hepatitis C patients.
Cell Immunol, 276 (2012), pp. 110-113
[24]
Chinnaswamy S , Chatterjee S , Boopathi R , Mukherjee S , Bhattacharjee S , Kundu TK .
A single nucleotide polymorphism associated with hepatitis C virus infections located in the distal region of the IL28B promoter influences NF-kappaB-mediated gene transcription.
[25]
Qashqari H , Al-Mars A , Chaudhary A , Abuzenadah A , Damanhouri G , Alqahtani M , et al.
Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance.
Infect Genet Evol, 19 (2013), pp. 113-119
[26]
Guan X , Liao Z , Ma H , Qian J , Liu Z , Yuan X , et al.
TNFRSF1B +676 T>G polymorphism predicts survival of non-small cell lung cancer patients treated with chemoradiotherapy.
BMC Cancer, 11 (2011), pp. 447
[27]
Steenholdt C , Enevold C , Ainsworth MA , Brynskov J , Thomsen OO , Bendtzen K .
Genetic polymorphisms of tumour necrosis factor receptor superfamily 1b and fas ligand are associated with clinical efficacy and/or acute severe infusion reactions to infliximab in Crohn’ s disease.
Aliment Pharmacol Ther, 36 (2012), pp. 650-659
[28]
Abe H, Tsubota A, Shimada N, Atsukawa M, Kato K, Takaguchi K, et al. Factors associated with sustained virological response in 24-week telaprevir-based triple therapy for chronic hepatitis C genotype 1b patients with the IL28B minor genotype. Hepatol Res 2014.
[29]
Niederau C , Huppe D , Zehnter E , Moller B , Heyne R , Christensen S , et al.
Chronic hepatitis C: treat or wait? Medical decision making in clinical practice.
World J Gastroenterol, 18 (2012), pp. 1339-1347
Copyright © 2015. Sociedad Española de Farmacia Hospitalaria
Descargar PDF
Idiomas
Farmacia Hospitalaria
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

es en
Política de cookies Cookies policy
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here.